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Abstract

Multifarious thin paraboloidal shell structures with unique geometric characteristics are utilized in aerospace,

telecommunication and other engineering applications over the years. Governing equations of motion of paraboloidal

shells are complicated and closed-form analytical solutions of these partial differential equations (PDEs) are difficult to

derive. Furthermore, distributed monitoring technique and its resulting global sensing signals of thin flexible membrane

shells are not well understood. This study focuses on spatially distributed modal sensing characteristics of free-floating

flexible paraboloidal membrane shells laminated with distributed sensor patches based on a new set of assumed mode

shape functions. In order to evaluate overall sensing/control effects, microscopic sensing signal characteristic, sensor

segmentation and location of distributed sensors on thin paraboloidal membrane shells with different curvatures are

investigated. Parametric analysis suggests that the signal generation depends on modal membrane strains in the meridional

and circumferential directions in which the latter is more significant than the former, while all bending strains vanish in

membrane shells. This study (1) demonstrates an analysis method for distributed sensors laminated on lightweight

paraboloidal flexible structures and (2) identifies critical components and regions that generate significant signals for

various shell modes.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Distributed sensor and control of shell structures based on the smart material and structronics technology
has been quickly developed in the last 20 years. Smart structures and structronic system are widely used in the
field of active shape and vibration control of high performance structures, and detailed reviews of the state of
smart structure technologies are provided [1–3]. More smart materials are applied to measurement and control
of fully integrated devices or systems, e.g., piezoelectric, shape memory materials, photostrictive materials,
electrorheological fluid (ER) and magnetorheological fluid (MR), etc. [4–6]. Because the piezoelectric material
exhibits both direct and converse piezoelectric effects, it can serve as distributed sensor and actuator for
structural health monitoring and precision control [7].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Paraboloidal shells of revolution are often used as key components in many advanced aerospace structures
and mechanical systems, such as nozzles, antennas, reflectors, rocket fairings, etc. To research methods of
exact control and sense of double curvature shells, a large number of investigations have been carried out over
the years. Independent modal control of flexible rings using orthogonal convolving piezoelectric sensors and
actuators was studied [8]. Distributed excitation and control of cylindrical shells with fully distributed
actuator, partially distributed actuators, segmented actuator patches, line actuators, etc. were also studied
[9,10]. Distributed sensing and control of shallow spherical shells have been investigated in the past few years
[11]. Micro-signals of conical shells and shell panels were evaluated [12]. Distributed modal voltages and their
spatial strain characteristics of toroidal shells and spherical shells were recently investigated [13,14]. Spatially
distributed sensing of paraboloidal shell based on the bending approximation theory was studied recently [15].
However, distributed sensing and control of flexible paraboloidal shells and their applications to micro and
large precision optical and antenna structures are still lacking and need to be fully explored. Based on a new
set of mode shape function, this study is to investigate modal dependent spatially distributed sensing signal of
lightweight membrane shells of revolution, and to evaluate the factors that influence the effects of sensing
signals, e.g., shell curvature, sensor segment locations and major signal components.

2. Modeling of flexible paraboloidal shells

A generic paraboloidal shell of revolution is placed in a tri-orthogonal global coordinate system (X, Y, Z)
and the shell itself is defined in a tri-orthogonal curvilinear coordinate system (f,c,a3), shown in Fig. 1. Two
radii of the double curvatures, respectively, are Rf and Rc; f denotes angular change in the meridian direction
and c denotes angular change in the circumferential direction. The Lamé parameters of the shell are A1 ¼ Rf

and A2 ¼ Rf sinf.
If there are no large rotations involved in shell dynamics, the effects of rotary inertias can be neglected in

thin shells. Also the transverse shear deformations are not considered in thin shells. Thus, fundamental
equation of paraboloidal shell can be derived. Substituting the parameters into the generic shell equation and
simplifying yields the fundamental system equations of paraboloidal shell [7]:

qðRcNffsinfÞ
qf

þ Rf
qNcf

qc
�NccRf cosfþ RfRc sinf

Qf3

Rf
þ F1

� �
¼ RfRc sinfrh €uf, (1)

qðRcNfc sinfÞ
qf

þ Rf
qNcc

qc
�NcfRf cosfþ RfRc sinf

Qc3

Rc
þ F 2

� �
¼ RfRc sinfrh €uc, (2)

qðRcQf3 sinfÞ

qf
þ Rf

qQc3

qc
� RfRc sinf

Nff

Rf
þ

Ncc

Rc

� �
þ RfRc sinfF 3 ¼ RfRc sinfrh €u3, (3)
Fig. 1. Definition of a generic paraboloidal shell.
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where

Qf3 ¼
1

RfRc sinf
qðMffRc sinfÞ

qf
þ Rf

qMcf

qc
�MccRf cosf

� �
, (4)

Qc3 ¼
1

RfRcsinf
qðMcfRcsinfÞ

qf
þ Rf

qMcc

qc
�McfRfcosf

� �
. (5)

Here r is the shell mass density; h is the thickness of shell; F1, F2 and F3, respectively are the input forces in the
meridional, circumferential and transverse directions; üi is the acceleration in the ith direction. Note that the
radii of curvatures Rf ¼ b/cos3f and Rc ¼ b/cosf. Imposing the Kirchhoff–Love assumptions and neglecting
the twisting in-plane effect of shells, the membrane strains s33 ¼ sf3 ¼ sc3 ¼ 0 and other membrane and
bending strains are defined as follows:

so
ff ¼

cos3f
b

quf

qf
þ u3

� �
, (6)

so
cc ¼

cosf
b sinf

quc

qc
þ uf cosfþ u3 sinf

� �
, (7)

so
fc ¼

cosf
b sinf

quf

qc
þ cos2f sinf

quc

qf
� uccosf

� �
, (8)

kff ¼
cos6f

b2

quf

qf
�

q2u3

qf2

� �
�

3 cos5f sinf

b2
uf �

qu3

qf

� �
, (9)

kcc ¼
cos2f

b2sinf

quc

qc
�

1

sinf
q2u3

qc2
þ uf cos

3f� cos3f
qu3

qf

� �
, (10)

kfc ¼
cos4f

b2sinf

quf

qc
�

2 cos4f

b2sinf

qu3

qcqf
þ

cos4f

b2

quc

qf
þ

2 cos3f

b2sin2f

qu3

qc
�

cos5fþ 2 cos3f sin2f

b2sinf

� �
uc. (11)

Using the relations between the mechanical force and stress, one can derive the mechanical membrane forces
and bending moments for thin shells:

Nff ¼ Kðso
ff þ mso

ccÞ, (12)

Ncc ¼ Kðso
cc þ mso

ffÞ, (13)

Nfc ¼ Ncf ¼
Kð1� mÞ

2
so
fc, (14)

Mff ¼ Dðkff þ mkccÞ, (15)

Mcc ¼ Dðkcc þ mkffÞ, (16)

Mfc ¼Mcf ¼
Dð1� mÞ

2
kfc. (17)

Note the membrane stiffness K ¼ Yh= 1� m2
� �

and the bending stiffness D ¼ Yh3=12ð1� m2Þ, here Y is
Young’s Modulus and m is Poisson’s ratio. Since the thin paraboloidal shell has non-constant double
curvatures, the fundamental equations are very complicated. For simplicity, different assumptions have been
put forward, including the membrane approximation, the bending approximation and the Donnell
Mushtari–Vlasov approximation. For flexible membrane paraboloidal shells, the membrane approximation
is adopted next.
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3. Paraboloidal membrane shells

For thin and flexible shells, the membrane approximation is a common approximation in which all bending
components are neglected [16].

Mff ¼Mcc ¼Mfc ¼ Qf3 ¼ Qc3 ¼ 0: (18)
Fig. 3. Sensor patches laminated on the shallow paraboloidal membrane shell (Case 1).

Table 1

Cases of paraboloidal membrane shells with two different parameters

Case Parameters

Height (c) m Radius (a) m

1 1 2

2 2 1

Fig. 2. Stresses of an element of paraboloidal shell with distributed sensor patch.
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This approximation is also called the extensional approximation and thus the system equations can be derived
accordingly:

qðRcNffsinfÞ
qf

þ Rf
qNcf

qc
�NccRfcosfþ RfRcsinfF 1 ¼ RfRcsinfrh €uf, (19)

qðRcNfcsinfÞ
qf

þ Rf
qNcc

qc
�NcfRfcosfþ RfRcsinfF 2 ¼ RfRcsinfrh €uc, (20)

�RfRcsinf
Nff

Rf
þ

Ncc

Rc

� �
þ RfRc sinfF 3 ¼ RfRc sinfrh €u3. (21)
Fig. 4. Free oscillation mode shapes (solid lines) of flexible paraboloidal shells (dash lines), (a–d), respectively, for modes (1–4).
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The relationships between membrane forces and membrane strains are defined by Eqs. (12) and (13). With the
membrane approximation, the membrane forces become

Nff ¼ K
cos3f

b

quf

qf
þ u3

� �
þ m

cosf
b sinf

quc

qc
þ uf cosfþ u3 sinf

� �� 	
, (22)

Ncc ¼ K
cosf
b sinf

quc

qc
þ uf cosfþ u3 sinf

� �
þ m

cos3f
b

quf

qf
þ u3

� �� 	
, (23)

Nfc ¼ Ncf ¼
Kð1� mÞ

2

cosf
b sinf

quf

qc
þ cos2f sinf

quc

qf
� uccosf

� �
. (24)

For evaluating distributed sensor signals and free oscillation behavior of paraboloidal shells, fundamental
structure dynamics of shells need to be investigated.
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Fig. 5. Sensing signals of shallow shell, when k ¼ 1: (a) the meridional sensing signal component; (b) the circumferential sensing signal

component; (c) the total distributed sensing signal.
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4. Mode shape functions for free-floating paraboloidal membrane shells

Fig. 2 illustrates a paraboloidal shell laminated with a distributed piezoelectric layer and its resultant
force and moment distribution of a shell element near the shell edge. Free vibration behaviors of para-
boloidal shells are evaluated in this section; distributed sensing characteristics are investigated in the next
section.

All external mechanical and electric excitations are zero in free vibration which exhibits shell’s intrinsic
dynamic characteristics. For a free-floating paraboloidal membrane shell, all forces and moments on the edge
are zero, i.e., the displacement and rotation angle are not zero. These boundary conditions (B.C.s) are defined
as follows:

Nff ¼ 0; Ncc ¼ 0; Qf3 ¼ 0; Mff ¼ 0: (25)

Recall that the membrane approximation requires all moment terms zero, so the mode shape function needs to
satisfy the membrane force B.C.s on the boundary. With experienced ‘‘trail-and-error’’ and verification, three
new mode shape functions of paraboloidal membrane shells with free B.C are selected as:

Ufk ¼ Akcos
ð2k þ 1Þp

f�
f sinkþ1f cos kc, (26a)
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Fig. 6. Sensing signals of shallow shell, when k ¼ 2: (a) the meridional sensing signal component; (b) the circumferential sensing signal

component; (c) the total distributed sensing signal.
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Uck ¼ �Akcosfsin
kþ1f sin kc, (26b)

U3k ¼ Akðk þ 1Þcosfsinkf coskc. (26c)

Here the mode number k ¼ 1, 2, 3y, f* is the meridional boundary angle, f is a meridional variable between
0�f*, and Ak is the kth modal amplitude. The total dynamic response can be represented by the summation of
all participating natural modes and their respective modal participation factor:

uiðf;c; tÞ ¼
X1
k¼1

ZkðtÞUikðf;cÞ; i ¼ 1; 2; 3: (27)

Note Zk(t) is the modal participation factor, Uik(f,c) is the mode shape function, k denotes the kth mode.
Distributed signals resulting from segmented piezoelectric sensor patches laminated on paraboloidal shells are
discussed next.
5. Distributed sensor signal of paraboloidal membrane shells

Piezoelectric patches spatially distributed on shell surface provide distributed global dynamic signals of
elastic paraboloidal shells. For paraboloidal shell, two-dimensional distributed sensors are proposed and
output signals from these distributed sensors are evaluated.
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Fig. 7. Sensing signals of shallow shell, when k ¼ 3: (a) the meridional sensing signal component; (b) the circumferential sensing signal

component; (c) the total distributed sensing signal.
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It is assumed that the distributed piezoelectric sensor is uniformly thin, as compare with shell thickness.
Thus, the piezoelectric sensor strains are constant and it is equal to the outer surface strains of the
paraboloidal shell. It is worth noting that as the distributed sensor, only the direct piezoelectric effect is
considered. So one can define an open-circuit voltage fs in the transverse direction as

fs
¼

hs

Se

Z
a1

Z
a2
ðh31Ss

11 þ h32Ss
22 þ h36Ss

12ÞA1A2 da1 da2, (28)

where hs is the distributed sensor thickness; Se is the effective sensor electrode area; h3i is the piezoelectric
constant indicating a signal generation in the transverse direction due to the strain in the ith direction; Ss

ij is the
strain on the ith surface in the jth direction. Furthermore, the strain can be divided into the membrane strain
and the bending strain, namely Ss

ij ¼ so
ij þ rskij, here rs is the sensor location away from the shell neutral

surface. Since many piezoelectric materials are not sensitive to in plane shear strain Ss
12, the signal expression

can be simplified to

fs
¼

hs

Se

Z
a1

Z
a2
ðh31Ss

11 þ h32Ss
22ÞA1A2 da1 da2. (29)

For paraboloidal shells, sensor sensitivities can be defined in three principal motions, namely along the
meridian, circumferential and transverse directions. For thin membrane shells with free boundary, vibration in
the transverse direction dominates and thus it is only considered in this study. Assuming h31 ¼ h32 and
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Fig. 8. Sensing signals of shallow shell, when k ¼ 4: (a) the meridional sensing signal component; (b) the circumferential sensing signal

component; (c) the total distributed sensing signal.
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Fig. 10. Sensing signals of deep shell, when k ¼ 1: (a) the meridional sensing signal component; (b) the circumferential sensing signal

component; (c) the total distributed sensing signal.

Fig. 9. Sensor patches laminated on a deep paraboloidal membrane shell (Case 2).
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substituting mode shape function into the strains, using shell Lamé parameters yields the sensor signal:

fs
¼

hs

Se

Z
a1

Z
a2
ðh3fSs

ff þ h3cSs
ccÞA1A2 da1 da2

¼
hsh3i

Se

Z
f

Z
c

b½ðk þ 1Þsinkþ1f coskcþ ðk þ 1Þ sinkþ1f sec2f cos kc�dfdc

¼ hsh3i½ðfffÞmem þ ðfccÞmem�, ð30Þ

where b ¼ a2/2c (as shown in Fig. 1), ðfffÞmem and ðfccÞmem are, respectively, the meridional and

circumferential membrane signal components. Assume an arbitrary distributed sensor is defined by f1�f2 and
c1�c2, the two signal components ðfffÞmem and ðfccÞmem are:

ðfffÞmem ¼
bðk þ 1Þ

Se ðsin kc2 � sinkc1Þ

Z f2

f1

sinkþ1fdf, (31)

ðfccÞmem ¼
bðk þ 1Þ

Se ðsin kc2 � sin kc1Þ

Z f2

f1

sinkþ1f sec2fdf, (32)
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Fig. 11. Sensing signals of deep shell, when k ¼ 2: (a) the meridional sensing signal component; (b) the circumferential sensing signal

component; (c) the total distributed sensing signal.
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where

Se ¼

Z f2

f1

Z c2

c1

A1A2 dcdf ¼
Z f2

f1

Z c2

c1

b2sinf
cos4f

dcdf ¼ b2
ðc2 � c1Þ

cos3f1 � cos3f2

3 cos3f1 cos
3f2

. (33)

Accordingly, the microscopic sensing signal components of distributed sensor patches defined by (f1�f2) and
(c1�c2) can be evaluated at different locations. And analysis of sensing signal characteristics and effects of
shell geometries can be investigated in case studies.
6. Case studies

For paraboloidal shells, geometric parameters are of importance to shell dynamic characteristics, since both
radii of curvatures are non-constant. In this section, the microscopic sensing signal components of flexible
membrane paraboloidal shell with different curvatures are evaluated. Two cases are shown in Table 1, in
which Case 1 is a shallow paraboloidal shell and Case 2 is a deep paraboloidal shell [15]. The shallow shell is
investigated first.
0
2

4

6

0

0.2

0.4

0.6

−20

−10

0

10

20

Pole

ψ(rad)

Edge

φ(rad)

(Φ
φφ

) m
e

m

0
2

4

6

0

0.2

0.4

0.6

−20

−10

0

10

20

Pole

ψ(rad)

Edge

φ(rad)

(Φ
ψ

ψ
) m

e
m

(b)(a)

0
2

4
6

0

0.2

0.4

0.6

−20

−10

0

10

20

Pole

ψ(rad)

Edge

φ(rad)

(Φ
) m

e
m

(c)

Fig. 12. Sensing signals of deep shell, when k ¼ 3: (a) the meridional sensing signal component; (b) the circumferential sensing signal

component; (c) the total distributed sensing signal.
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6.1. Case 1: Shallow paraboloidal membrane shell

Case 1 is a shallow paraboloidal shell with meridional angle from 0 to 0.7854 radians (f*
¼ 0.7854) along the

meridional direction and a circumferential angle from 0 to 2p radians (c ¼ 0�2p) along the circumferential
direction, Fig. 3. Free vibration mode shapes are investigated first, followed by distributed sensor signals.

6.1.1. Free vibration mode shapes

Free vibration mode shapes of shallow paraboloidal shell are investigated using the finite element tool—
ANSYS. The model is built using shell 41 element with free B.C. Fig. 4 illustrates the mode shapes of the first
four modes.
Table 2

Comparison of maximal signal magnitudes of two paraboloidal membrane shells (Case 1—shallow; Case 2—deep)

Mode 1 Mode 2 Mode 3 Mode 4

Case 1 (c/a ¼ 1/2) (fff)mem 0.284 0.435 0.536 0.597

(fcc)mem 0.381 0.738 0.989 1.103

(f)mem ¼ (fff)mem+(fcc)mem 0.652 1.138 1.526 1.699

Case 2 (c/a ¼ 2/1) (fff)mem 2.273 3.616 4.29 4.777

(fcc)mem 3.051 5.902 7.916 8.822

(f)mem ¼ (fff)mem+(fcc)mem 5.217 9.076 12.206 13.599
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Fig. 13. Sensing signals of deep shell, when k ¼ 4: (a) the meridional sensing signal component; (b) the circumferential sensing signal

component; (c) the total distributed sensing signal.
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6.1.2. Microscopic sensor signals of sensor patches

To evaluate the spatial micro-sensing signal characteristic, the size of distributed sensor patches is defined
as: Df ¼ f2�f1 ¼ 0.1 rad, Dc ¼ c2�c1 ¼ 0.2 rad, except patches close to the free edge with Df ¼
f2�f1 ¼ 0.08 rad. Thus, there are 248 sensor patches (i.e., 8 patches in the meridional direction and 31
patches in the circumferential direction) laminated on the shallow paraboloidal membrane shell and their
sensor areas can be calculated by Eq. (33). Using the sensing signal component expressions defined previously,
one can calculate the detail signal components of sensor patches at various locations for different natural
modes and those signals, i.e., (fff)mem, (fcc)mem and (f)mem ¼ (fff)mem+(fcc)mem, are, respectively,
plotted. Figs. 5–8 illustrate these spatially distributed signal components of the first four modes (k ¼ 1 to 4) on
shallow paraboloidal membrane shells. The micro-sensing signal is always near to zero (orE0) at the centre
pole and varies with respective to different wavenumbers at the free edge.

With the mode number increasing, the signal wave pattern grows at the free edge corresponding to modal
strain variations, and the signal magnitude decreases due to diminishing membrane strains at higher modes,
though the modal amplitude Ak assumed unity. In practice, the modal amplitude usually decreases at higher
modes, too. Furthermore, the circumferential membrane modal signal component (fcc)mem is larger than the
meridional membrane modal signal component (fff)mem. Detailed signal magnitude comparisons of two cases
are summarized later.

6.2. Case 2: Deep paraboloidal membrane shell

Case 2 is a deep paraboloidal shell, which is laminated with 13 sensor patches in the meridional direction
and 31 patches in the circumferential direction on its surface, as shown in Fig. 9. Spatial micro-sensing signal
distribution patterns of Case 2 are very similar to those of Case 1. However, signal magnitudes of distributed
sensor of Case 2 are larger than those of Case 1. Figs. 10–13 illustrate the sensing signal distributions of first
four modes of deep paraboloidal shell—Case 2.

Modal signal magnitudes of various components of the two cases are summarized in Table 2. Since modal
amplitudes are normalized, induced modal strains in deep shell are higher than those of shallow shell.
Accordingly, the resulting microscopic signal components of deep shell are higher than those of shallow
membrane shell. Again, quantitative comparison indicates the circumferential contribution dominates in all
modal signals and the signals gradually decrease at higher modes, due to diminishing influence of membrane
effects to higher modes.

7. Conclusions

In this study, mathematical modeling, dynamic characteristics, mode shape functions, micro-sensing signals
and signal components with various curvatures of flexible paraboloidal membrane shells were presented. A
new set of mode shape functions for free-floating paraboloidal membrane shells were proposed and used in the
distributed signal analysis. Based on detailed analysis of micro-sensing signals of paraboloidal membrane
shells, the following conclusions can be drawn:
(1)
 For thin and flexible paraboloidal membrane shells, the membrane approximation was adopted in this
study. Thus, distributed sensing signals are dominated by membrane strains, while components resulting
from bending strains are all zeros. Quantitative comparison indicates the circumferential component
dominates in all modal signals and the signals gradually decrease at higher modes, due to diminishing
influence of membrane effects to higher modes.
(2)
 Micro-sensing signal of the sensor patches differs at various locations and modes on paraboloidal shells.
Signal is zero at the pole; it fluctuates with the change of wavenumbers at the free boundary in accordance
with modal dynamic behaviors. Natural modal strain variations of thin paraboloidal shells generate
distributed sensor signals in sensor patches, which are distinct among shell natural modes.
(3)
 Contribution of circumferential membrane signal component is larger than that of meridional membrane
signal component in overall sensing signal for a given mode, although the difference between the two
components is not significant in this study.
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(4)
 The curvature of paraboloidal shells influences micro-sensing signal amplitudes of piezoelectric distributed
sensor patches. Although the micro-sensing signal patterns are similar among membrane shells with
various curvatures, signals magnitudes of deep membrane paraboloidal shell are larger than those of
shallow shell.
Based on the detailed microscopic sensing signal analysis, design guidelines of optimal sensor placements
can be assured. Spatially distributed signals are location and modal dependent. Depending on user’s
application, one can selectively place sensor patch(es) at critically locations to maximize the output at the
minimal cost. These data are also valuable to develop dynamic vibration control and static shape actuation of
lightweight paraboloidal flexible structures ranging from micro-electromechanical systems to large-scale space
structures.
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